PE-Reservoir Modelling and Simulation

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>L T P C Hrs/Week</td>
<td>Theory</td>
</tr>
<tr>
<td></td>
<td>MS ES IA LW LE/Viva</td>
</tr>
<tr>
<td>2 1 0 3 3</td>
<td>25 50 25 --</td>
</tr>
</tbody>
</table>

Unit I: Reservoir Modeling

Introduction to Modeling – Geological Modeling, Types of Model & designing of various models depending on reservoir complexities, rock properties, fluid properties etc., Concept of Black Model and Compositional Model

Hours: 10

Unit II: Reservoir Simulation

Introduction, Historical Background, Application of Simulator, Different models, Flow Conditions: Single phase, two phase & multiphase equations for one two & three dimensional models Special Concept: Explicit & implicit grid system, Finite difference & finite element method, Matrix solution, iterative method, stability criteria

Hours: 10

Unit III: Data Preparation

Pesudo functions, Reservoir Model Solution Techniques: Implicit pressure and Explicit Saturation (IMPES) ; Implicit pressure & Implicit Saturation (IMPIS) , Preview of Numerical Solution Methods: Direct & Iterative method

Hours: 9

Unit IV: History Matching

Mechanics and Parameter match Special Concepts: Coning and Compositional Models Simulation Optimization using Economic and Techno economic Evaluation Computation of Economic Indices viz. different variants based on technical and economic considerations Introduction to streamline simulation and comparison of conventional / streamline simulation

Hours: 10

Total Hours: 39

Texts and References:

Courses highlighted with RED will be offered at SPT – PDPU Campus to the students not opting for credit exchange in that particular semester.

Courses highlighted with BLUE will be offered at Oklahoma Campus to the students opting for credit exchange in that particular semester.

Courses highlighted with BLACK are completely replicated with Oklahoma University.

Note #: At SPT – PDPU Campus, the laboratory component will be of two hours but the allotted credit will be 1.
B.TECH-PETROLEUM ENGG. (UPSTREAM) COURSE STRUCTURE

(in line with Oklahoma University)

Fourth Year, VIII Semester

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>MS</td>
<td>ES</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Unit I: Gas Lift Installation and Design

Hours: 10

Introduction, basic principles of gas lift, intermittent and continuous gas lift system. Unloading sequence Gas lift valves, classification, valve mechanics and calibration. Selection merits and demerits of different categories of gas lift valves. Gas lift design, basic principles of gas lift feasibility, design and operations, Examples of Mandrel Spacing Design Using IPO and PPO Valves. Design problems. Gas lift optimization, Types of Gas lift installations. Operational and maintenance aspect of gas lift wells. Surface facilities for gas lift. Power requirement.

Unit II: Pumping Methods

Hours: 10

Unit III GGS and Processing

Hours: 10

GGS – layout, treatment and installations, Separators -Types of separator, Liquid level control and relative advantages/disadvantages of different type of separators, Dehydration & Desalting of Oil, De-emulsification and Desalting process Different types of storage system, Types & features of storage tanks, fixed roof and floating roof tanks. Design of storage tanks, transportation and metering system.

Unit IV: Production Problems and Well Stimulation Techniques

Hours: 09

Problems-Analysis of well history, Reservoir considerations, Oil and gas coning, Water production problems in oil or gas wells, Source identification and control measures, Paraffines and Asphaltenes deposition and removal, Scales in oil field systems, Sand deposition, Sand control techniques, Formation Sand Size analysis, optimum gravel - sand ratio, gravel pack thickness and selection, gravel packing fluid & gravel pack techniques, Resin consolidation methods.

Well Stimulation - Formation damage, Need and enhancement of well productivity, Stimulation methods, Hydraulic fracturing – types of fracturing fluids, additives and proppants, parameters for fracking, initiation of fractures, Acidizing – Matrix and Fracture, Nitroshooting and De-paraffination, Well stimulation using surfactants, Wave technology and microbial stimulation.

Total Hours: 39

Courses highlighted with RED will be offered at SPT – PDPU Campus to the students not opting for credit exchange in that particular semester.

Courses highlighted with BLUE will be offered at Oklahoma Campus to the students opting for credit exchange in that particular semester.

Courses highlighted with BLACK are completely replicated with Oklahoma University.

Note #: At SPT – PDPU Campus, the laboratory component will be of two hours but the allotted credit will be 1.
B.TECH-PETROLEUM ENGG. (UPSTREAM) COURSE STRUCTURE
(in line with Oklahoma University)
Fourth Year, VIII Semester

Texts and References:

PE-Production Engineering-II (PE-4423)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>L T P C Hrs/Week</td>
<td>Theory Practical</td>
</tr>
<tr>
<td></td>
<td>MS ES IA LW LE/Viva</td>
</tr>
</tbody>
</table>

| 3 | -- | -- | 3 | 3 | -- | -- | -- | -- | 100 |

Artificial lift design; sucker rod pumping, electric submersible pumping, plunger lift, and gas lift; design of surface production equipment; oil and gas separation; oil treating; gas dehydration; single and two-phase flow through pipes, fluid measurement; pipeline system design.

Courses highlighted with RED will be offered at SPT – PDPU Campus to the students not opting for credit exchange in that particular semester.
Courses highlighted with BLUE will be offered at Oklahoma Campus to the students opting for credit exchange in that particular semester.
Courses highlighted with BLACK are completely replicated with Oklahoma University.
Note: At SPT – PDPU Campus, the laboratory component will be of two hours but the allotted credit will be 1.
B.TECH-PETROLEUM ENGG. (UPSTREAM) COURSE STRUCTURE

(in line with Oklahoma University)

Fourth Year, VIII Semester

PE-Integrated Reservoir Management

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>MS</td>
<td>ES</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Unit I: Petroleum Resource Management

- Hours: 9

Unit II: Integrated Reservoir Management

- Hours: 10
- Concept of Reservoir Management, Input to modeling, Concept of static and Dynamic Modeling, Structural modeling, Property modeling and Facies modeling, Simulation runs, History matching, Reservoir characterization, Mesh preparation, Gridding and Contouring, Cluster Analysis, Production Forecasting, Performance Analysis, Drive Mechanism- Solution gas drive, Gas-cap drive, Water drive, Gravity-drainage drive, Combination drive

Unit III: Field Development Studies

- Hours: 10
- Conceptual field development studies, Deterministic and Probabilistic Resource estimation, Monte Carlo Simulation—P90, P50 and P10 Cases, Volumetric, Stochastic, Decline Curve analysis and Material Balance Calculations, Risking in Production Profile, Initial Field Development Plan Ingredients and considerations in Field development planning and implementation (Case Study), Differentiation in cases of oil, gas and condensate.

Unit IV: Stimulation Processes for plateau maintenance

- Hours: 10
- Technology providers in Hydrocarbon Industries, Development and Deployment Cycles, Matrix Acidization, Technology of Acid Pumping, Coiled Tubing Operation, Hydraulic Fracturing, Work over operation, Sand control and screening guides

Total Hours: 39

Texts and References:

1. Integrated Reservoir Asset Management, John R Franchi, Elsevier
2. Integrated Petroleum Reservoir Management, Abdus Satter, Ganesh Thakur, PennWell Books
3. www.spe.org/industry/docs/PRMS
5. Well completion and services, Dennis Perrin, Oil and Gas Field Development technique series, Technip Editions

Courses highlighted with RED will be offered at SPT – PDPU Campus to the students not opting for credit exchange in that particular semester.

Courses highlighted with BLUE will be offered at Oklahoma Campus to the students opting for credit exchange in that particular semester.

Courses highlighted with BLACK are completely replicated with Oklahoma University.

Note: At SPT – PDPU Campus, the laboratory component will be of two hours but the allotted credit will be 1.
PE-Integrated Reservoir Management (PE-4553)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>--</td>
</tr>
</tbody>
</table>

Application of petroleum engineering and geoscience principles to the design of the reservoir management plan. The management environment; integrated reservoir description; performance prediction; developing the reservoir management plan; economics.

Courses highlighted with RED will be offered at SPT – PDPU Campus to the students not opting for credit exchange in that particular semester.

Courses highlighted with BLUE will be offered at Oklahoma Campus to the students opting for credit exchange in that particular semester.

Courses highlighted with BLACK are completely replicated with Oklahoma University.

Note: At SPT – PDPU Campus, the laboratory component will be of two hours but the allotted credit will be 1.
B.TECH-PETROLEUM ENGG. (UPSTREAM) COURSE STRUCTURE

in line with Oklahoma University

Fourth Year, VIII Semester

PE-Dissertation and Seminar II

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Aim: To address specific industry and research related problems.

Unit 1: Experimentation and data analysis and Synthesis

Unit 2: Outcome, discussion and conclusion

Unit 3: Report Writing, Presentation and Viva-Voce

Text Books & Recommended Software:

3. Recent ENDNOTE Software for referencing
4. JABREF for Referencing.

Courses highlighted with RED will be offered at SPT – PDPU Campus to the students not opting for credit exchange in that particular semester.

Courses highlighted with BLUE will be offered at Oklahoma Campus to the students opting for credit exchange in that particular semester.

Courses highlighted with BLACK are completely replicated with Oklahoma University.

Note: At SPT – PDPU Campus, the laboratory component will be of two hours but the allotted credit will be 1.
B.TECH-PETROLEUM ENGG. (UPSTREAM) COURSE STRUCTURE

(in line with Oklahoma University)

Fourth Year, VIII Semester

PE - Well Test Analysis and EOR

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Unit-1
Well Test Analysis

Hours: 10

Principles of fluid flow for steady state, semi steady state & non steady state conditions. Diffusivity equation derivation & Constant Terminal Rate Solution, Drill Stem Testing: Equipment, DST Chart observation, analysis & interpretation

Unit 2:-

Pressure Transient Tests: Pressure Build-up / Draw-down tests, RLT (Reservoir Limit Test) etc. for both oil and gas. Advanced Pressure Transient Analysis, Gas Well tests: Flow after flow, isochronal, modified isochronal tests. Other tests: Interference and pulse tests, Pressure Fall Off test in Injection wells. Multi rate tests, pulse test, Average reservoir pressure. PBU / PDD in Horizontal wells, Type Curves & their uses

Unit-3
EOR and Water Injection

Hours: 10

Unit-4
Other EOR Techniques

Hours: 09

Polymer Flooding, Surfactant flooding, Caustic flooding, ASP – Principles and applications. Miscible Flooding: Principles and applications of CO2 flooding, Dry & Enriched gas flooding. Inert Gas Flooding, WAG flooding, Thermal processes in EOR.

Total Hours: 39

Texts and References:
2. R.C. Earlougher, Modern Well Test Analysis.
3. Mathews and Russel, Well Testing

Courses highlighted with RED will be offered at SPT – PDPU Campus to the students not opting for credit exchange in that particular semester.

Courses highlighted with BLUE will be offered at Oklahoma Campus to the students opting for credit exchange in that particular semester.

Courses highlighted with BLACK are completely replicated with Oklahoma University.

Note: At SPT – PDPU Campus, the laboratory component will be of two hours but the allotted credit will be 1.
B.TECH-PETROLEUM ENGG. (UPSTREAM) COURSE STRUCTURE

in line with Oklahoma University

Fourth Year, VIII Semester

<table>
<thead>
<tr>
<th>PE-Pipeline Engineering</th>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>MS</td>
<td>ES</td>
</tr>
<tr>
<td>Unit I : Introduction</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Hours: 10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Introduction to Pipelines, Responsibilities of pipeline engineers and designers, scope of pipeline, inputs and outputs, process diagram (PFD, PNID), course and standards, oil and gas terminology, types of platforms, pipeline elements, pipeline materials, material takeoff for onshore and offshore pipelines

| Unit II : Pipeline Drawings | Hours: 9 |

Field layouts, alignment sheet, riser and spool, GAD’S, crossing details, trench details, anode details, monel sheathing

| Unit III : Pipeline Specification | Hours: 10 |

Pipeline valve thickness calculations, cathodic protection, valves specifications & specialties, pipeline supports, clamps, configuration of equipments, pipeline installation methods, on bottom stability, free span calculations

| Unit IV : Stress Calculation | Hours: 10 |

Pipe stress Requirements, fatigue failure, stress intensification factor, code compliance, pipe support span calculations, piping design for leading types (sustain load – pressure, weight, expansion loads, hanger design, occasional loads), piping configuration, loops – types and sizing, cold spring, underground pipe, flange leak analysis, thrust force calculations, code compliances

Total Hours: 39

Texts and References:

Courses highlighted with RED will be offered at SPT – PDPU Campus to the students not opting for credit exchange in that particular semester.

Courses highlighted with BLUE will be offered at Oklahoma Campus to the students opting for credit exchange in that particular semester.

Courses highlighted with BLACK are completely replicated with Oklahoma University.

Note #: At SPT – PDPU Campus, the laboratory component will be of two hours but the allotted credit will be 1.